Gartner defines augmented data quality (ADQ) solutions as a set of capabilities for enhanced data quality experience aimed at improving insight discovery, next-best-action suggestions and process automation by leveraging AI/machine learning (ML) features, graph analysis and metadata analytics. Each of these technologies can work independently, or cooperatively, to create network effects that can be used to increase automation and effectiveness across a broad range of data quality use cases. These purpose-built solutions include a range of functions such as profiling and monitoring; data transformation; rule discovery and creation; matching, linking and merging; active metadata support; data remediation and role-based usability. These packaged solutions help implement and support the practice of data quality assurance, mostly embedded as part of a broader data and analytics (D&A) strategy. Various existing and upcoming use cases include: 1. Analytics, artificial intelligence and machine learning development 2. Data engineering 3. D&A governance 4. Master data management 5. Operational/transactional data quality
The data integration tools market comprises stand-alone software products that allow organizations to combine data from multiple sources, including performing tasks related to data access, transformation, enrichment and delivery. Data integration tools enable use cases such as data engineering, operational data integration, delivering modern data architectures, and enabling less-technical data integration. Data integration tools are procured by data and analytics (D&A) leaders and their teams for use by data engineers or less-technical users, such as business analysts or data scientists. These products are consumed as SaaS or deployed on-premises, in public or private cloud, or in hybrid configurations.
A D&A governance platform is a set of integrated business capabilities that helps business leaders and users evaluate and implement a diverse set of governance policies and monitor and enforce those policies across their organizations’ business systems. These platforms are unique from data management and discrete governance tools in that data management and such tools focus on policy execution, whereas these platforms are used primarily by business roles — not only or even specifically IT roles.