Analytics and business intelligence platforms — enabled by IT and augmented by AI — empower users to model, analyze and share data. Analytics and business intelligence (ABI) platforms enable organizations to understand their data. For example, what are the dimensions of their data — such as product, customer, time, and geography? People need to be able to ask questions about their data (e.g., which customers are likely to churn? Which salespeople are not reaching their quotas?). They need to be able to create measures from their data, such as on-time delivery, accidents in the workplace and customer or employee satisfaction. Organizations need to blend modeled and nonmodeled data to create new data pipelines that can be explored to find anomalies and other insights. ABI platforms make all of this possible.
Augmented analytics uses AI to automate analytics workflows in platforms, contextualizing user interfaces with automated insights, generative storytelling explanations and collaborative exploration. Driven by machine learning (ML) and generative AI, augmented analytics enables natural language queries and personalized analytics catalogs. It democratizes advanced analytics with augmented data ingestion, data preparation, analytics content and DSML model development. It also curbs human biases and accelerates insights for diverse users.
Gartner defines cloud AI developer services (CAIDS) as cloud-hosted or containerized services and products that enable software developers who are not data science experts to use artificial intelligence (AI) models via APIs, software development kits (SDKs) or applications. Core capabilities include automated machine learning (autoML) including automated data preparation, automated feature engineering and automated model building, and model management and operationalization for language, vision and tabular use cases. Optional and important complementary capabilities include AI code models and assistants. Cloud AI developer services help organizations embed intelligence, such as AI and ML insights, into their applications. While that is what cloud AI developer services offer, it is more important to note how they accomplish this. These services democratize and increase the availability of AI and ML to software engineers through the automation and features offered. Traditional activities regarding data acquisition, data quality, feature engineering, algorithm selection and model training are augmented by the technology. Cloud AI developer services open up a world of possibilities for software engineers to build AI and ML production capabilities and features for enterprise-built applications.