Active metadata management is a set of capabilities that enables continuous access and processing of metadata that support ongoing analysis over a different spectrum of maturity, use cases and vendor solutions. Active metadata outputs range from design recommendations based upon execution results and reports of runtime steps through, and indicators of, business outcomes achieved. The resulting recommendations from those analytics are issued as design inputs to humans or system-level instructions that are expected to have a response.
Analytics and business intelligence platforms — enabled by IT and augmented by AI — empower users to model, analyze and share data. Analytics and business intelligence (ABI) platforms enable organizations to understand their data. For example, what are the dimensions of their data — such as product, customer, time, and geography? People need to be able to ask questions about their data (e.g., which customers are likely to churn? Which salespeople are not reaching their quotas?). They need to be able to create measures from their data, such as on-time delivery, accidents in the workplace and customer or employee satisfaction. Organizations need to blend modeled and nonmodeled data to create new data pipelines that can be explored to find anomalies and other insights. ABI platforms make all of this possible.
Data preparation is an iterative and agile process for finding, combining, cleaning, transforming and sharing curated datasets for various data and analytics use cases including analytics/business intelligence (BI), data science/machine learning (ML) and self-service data integration. Data preparation tools promise faster time to delivery of integrated and curated data by allowing business users including analysts, citizen integrators, data engineers and citizen data scientists to integrate internal and external datasets for their use cases. Furthermore, they allow users to identify anomalies and patterns and improve and review the data quality of their findings in a repeatable fashion. Some tools embed ML algorithms that augment and, in some cases, completely automate certain repeatable and mundane data preparation tasks. Reduced time to delivery of data and insight is at the heart of this market.
Gartner defines a data science and machine learning platform as an integrated set of code-based libraries and low-code tooling that support the independent use by, and collaboration between, data scientists and their business and IT counterparts through all stages of the data science life cycle. These stages include business understanding, data access and preparation, experimentation and model creation, and sharing of insights. They also support machine learning engineering workflows including creation of data, feature, deployment and testing pipelines. The platforms are provided via desktop client or browser with supporting compute instances and/or as a fully managed cloud offering. Data science and machine learning (DSML) platforms are designed to allow a broad range of users to develop and apply a comprehensive set of predictive and prescriptive analytical techniques. Leveraging data from distributed sources, cutting-edge user experience, and native machine learning and generative AI (GenAI) capabilities, these platforms help to augment and automate decision making across an enterprise. They provide a range of proprietary and open-source tools to enable data scientists and domain experts to find patterns in data that can be used to forecast financial metrics, understand customer behavior, predict supply and demand, and many other use cases. Models can be built on all types of data, including tabular, images, video and text for applications that require computer vision or natural language processing.
Reviews for 'Data and Analytics - Others'
The global industrial IoT platform delivers multiple integrations to industrial OT assets and other asset-intensive enterprises’ industrial data sources to aggregate, curate and deliver contextualized insights that enable intelligent applications and dashboards through an edge-to-cloud architecture. The global industrial Internet of Things (IIoT) platform market exists because of the core capabilities of integrated middleware software that support a multivendor marketplace of intelligent applications to facilitate and automate asset management decision making. IIoT platforms also provide operational visibility and control for plants, infrastructure and equipment. Common use cases are augmentation of industrial automation, remote operations, sustainability and energy management, global scalability, IT/operational technology (OT) convergence, and product servitization of industrial products. The IIoT platform monitors IoT endpoints and event streams, supports and/or translates a variety of manufacturer and industry proprietary protocols, analyzes data in the platform, at the edge and in the cloud, integrates and engages IT and OT systems in data sharing and consumption, enables application development and deployment and can enrich and supplement OT functions for improved asset management life cycle strategies and processes. In some emerging use cases, the IIoT platform may obviate some OT functions.