Analytics query accelerators provide SQL or SQL-like query support on a broad range of data sources. They are most frequently used as a means of providing interactive and production-optimized delivery on semantically flexible data stores that do not inherently have the capabilities to provide sufficient performance or ease of use on their own. Commonly used in conjunction with data lakes, they aim to support BI dashboards, interactive query capabilities, data modeling and other analytics use cases.
Gartner defines analytics and business intelligence platforms (ABI) as those that enable organizations to model, analyze and visualize data to support informed decision making and value creation. These platforms facilitate the preparation of data and the creation of interactive dashboards, reports and visualizations to uncover patterns, predict trends and optimize operations. By doing so, they empower users to collaborate and effectively communicate the dimensions and measures that drive their organization. The platforms may also optionally include the ability to create, modify or enrich a semantic model, including business rules. Analytics and business intelligence platforms integrate data from multiple sources, such as databases, spreadsheets, cloud services and external data feeds, to provide a unified view of data, breaking down silos and transforming raw data into meaningful insights. They also allow users to clean, transform and prepare data for analysis, in addition to creating data models that define relationships between different data entities.
Augmented analytics uses AI to automate analytics workflows in platforms, contextualizing user interfaces with automated insights, generative storytelling explanations and collaborative exploration. Driven by machine learning (ML) and generative AI, augmented analytics enables natural language queries and personalized analytics catalogs. It democratizes advanced analytics with augmented data ingestion, data preparation, analytics content and DSML model development. It also curbs human biases and accelerates insights for diverse users.
Gartner defines cloud AI developer services (CAIDS) as cloud-hosted or containerized services and products that enable software developers who are not data science experts to use artificial intelligence (AI) models via APIs, software development kits (SDKs) or applications. Core capabilities include automated machine learning (autoML) including automated data preparation, automated feature engineering and automated model building, and model management and operationalization for language, vision and tabular use cases. Optional and important complementary capabilities include AI code models and assistants. Cloud AI developer services help organizations embed intelligence, such as AI and ML insights, into their applications. While that is what cloud AI developer services offer, it is more important to note how they accomplish this. These services democratize and increase the availability of AI and ML to software engineers through the automation and features offered. Traditional activities regarding data acquisition, data quality, feature engineering, algorithm selection and model training are augmented by the technology. Cloud AI developer services open up a world of possibilities for software engineers to build AI and ML production capabilities and features for enterprise-built applications.
Gartner defines the market for cloud database management systems (DBMSs) as the market for software products that store and manipulate data and that are primarily delivered as software as a service (SaaS) in the cloud. Cloud DBMSs may optionally be capable of running on-premises, or in hybrid, multicloud or intercloud configurations. They can be used for transactional and/or analytical work. They may have features that enable them to participate in a wider data ecosystem. They typically persist data using proprietary components in a durable manner, enabling a full range of create, read, update and delete operations.
Data clean rooms are secure environments where multiple parties can analyze and share data without exposing raw data to each other. They enable collaborative analysis while ensuring privacy, compliance with data protection regulations, and strict access controls. These rooms use privacy-enhancing technologies to anonymize or aggregate data, allowing companies to gain insights from combined datasets without compromising individual privacy or proprietary information. The typical users include advertisers, publishers, data providers, and tech companies seeking to perform joint data analysis for marketing, research, and business intelligence.
Gartner defines a data science and machine learning platform as an integrated set of code-based libraries and low-code tooling. These platforms support the independent use and collaboration among data scientists and their business and IT counterparts, with automation and AI assistance through all stages of the data science life cycle, including business understanding, data access and preparation, model creation and sharing of insights. They also support engineering workflows, including the creation of data, feature, deployment and testing pipelines. The platforms are provided via desktop client or browser with supporting compute instances or as a fully managed cloud offering.
Gartner defines DataOps as the collaborative data management practice focusing on improving communication, continuous integration, automation, observability and operations of data flows between data managers, data consumers, and their teams across the organization. DataOps tools connect and orchestrate data pipelines across heterogeneous systems. Data and analytics leaders are the buyers in this emerging market. The primary audience for DataOps tools is “data manager” personas like, data engineers, data integration developers, operations/incident analysts, database administrators and data architects. The secondary audience is “data consumer” personas like business analysts, business intelligence developers, data scientists and citizen roles (departmental users who are domain experts, but less technical).
Generative AI (GenAI) engineering refers to the field of engineering that focuses on the development, implementation and optimization of generative AI models. Generative AI refers to technologies that can generate new derived versions of content, strategies, designs and methods by learning from large repositories of original source content. By developing GenAI models, engineers can create new and innovative ways to generate content. The vendors in this segment are made up by incumbent and startup vendors covering full-model life cycle management, specifically adjusted to and catering to development, refinement and deployment of generative models (e.g., LLMs) and other GenAI artifacts in production applications. Please note that this market is based on Beta research and is continuously evolving. We will be making changes as and when there are new updates.
Generative AI (GenAI) model providers focus on developing and providing generative AI technologies and make them available to other developers, businesses and general public through APIs or commercial licenses. Generative AI refers to technologies that can generate new derived versions of content, strategies, designs and methods by learning from large repositories of original source content. This layer of vendors offers access to commercial or open-source foundation models such as LLMs and other types of generative algorithms (such as GANs, genetic/evolutionary algorithms or simulations). These models can be provided for developers to embed into their applications or be used as base models for fine-tuning customized models for their software offerings or internal enterprise use cases. This helps businesses gain the benefits of advanced generative AI technologies while avoiding the high costs, expertise requirements and time needed to develop these technologies in-house. Please note that this market is based on Beta research and is continuously evolving. We will be making changes as and when there are new updates.